
Orbital degeneracy and the microscopic model of the FeAs plane in the iron-based

superconductors

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys.: Condens. Matter 20 425203

(http://iopscience.iop.org/0953-8984/20/42/425203)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 29/05/2010 at 15:58

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/20/42
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 20 (2008) 425203 (6pp) doi:10.1088/0953-8984/20/42/425203

Orbital degeneracy and the microscopic
model of the FeAs plane in the iron-based
superconductors
Tao Li

Department of Physics, Renmin University of China, Beijing, 100872,
People’s Republic of China

Received 7 April 2008, in final form 27 July 2008
Published 9 September 2008
Online at stacks.iop.org/JPhysCM/20/425203

Abstract
A microscopic model for the FeAs plane in the newly discovered iron-based superconductors is
proposed with the emphasis on the role of the orbital degeneracy between the Fe 3dxz and 3dyz

orbitals in the crystal field environment. The model predicts that the Fe 3dxz and 3dyz orbitals
have the largest itinerancy among the five Fe 3d orbitals as a result of their hybridization with
the As 4p orbital. The covalence with the As 4p orbital also explains naturally the large
geometric frustration which is necessary for the formation of the magnetic order with a
wavevector at (π, 0) as found in experiments. An extended s-wave pairing is proposed for the
superconducting state based on symmetry considerations and the local magnetic correlation
pattern.

(Some figures in this article are in colour only in the electronic version)

The newly discovered iron-based superconductors, F-doped
LaOFeAs [1] and its derivatives [2–5] with rare earth
substitution, have given rise to much interest in the research
community. Similar to the high-Tc cuprates, the iron-based
superconductors also have a layered structure in which the role
of the copper–oxygen plane in the high-Tc cuprates is played
by the FeAs plane. In both systems, the charge dopant and
the doped carrier are separated spatially, which produces an
ideal environment for the coherent motion of the latter at an
incommensurate band filling. This similarity may imply that
a still higher Tc is possible in this series of compounds by
optimizing the interlayer distance and planeness of the FeAs
layer.

Band structure, as calculated from density functional
theory (DFT) and its DMFT improvement, has been examined
by several groups [6–10]. Not surprisingly, most of the
spectral weight close to the Fermi energy is contributed by
the Fe 3d orbital, as the Fe is the only ion in the system that
possesses an unclosed shell. The DFT calculation also predicts
an antiferromagnetic ordered ground state for the parent
compound LaOFeAs with an ordering wavevector at (π, 0),
which is confirmed by neutron scattering experiments [11].

Based on the results of the DFT calculations, several
phenomenological theories for the doped iron-based supercon-
ductors have been proposed [12–14]. In this paper, we follow

instead the quantum chemistry considerations and propose a
tight binding microscopic model for the FeAs plane. In our
model, the orbital degeneracy between the Fe 3dxz and 3dyz

orbital plays an essential role. The model predicts that the Fe
3dxz and 3dyz orbital have the largest itinerancy among the five
Fe 3d orbitals as a result of their hybridization with the As 4p
orbital. The covalence with the As 4p orbital also explains
naturally the large geometric frustration which is necessary
for the formation of the magnetic order with a wavevector
at (π, 0), as found in experiments. Based on symmetry
considerations and the local magnetic correlation pattern, we
propose an extended s-wave pairing for the superconducting
state.

A key issue for the construction of a microscopic model
for the FeAs plane is to elucidate the role of the orbital
degeneracy of the five Fe 3d orbitals. In the presence of
crystal field, the five-fold degenerate Fe 3d atomic orbital will
split according to the irreducible representations of the crystal
symmetry and not all five 3d orbitals are equally important for
the low energy physics. According to the DFT calculation, the
crystal splitting of the Fe 3d orbital is small and all five Fe 3d
orbitals should be included in the model in principle. However,
the inclusion of the electron correlation effect can enhance the
crystal splitting and vice versa. At the same time, the five Fe
3d orbitals have quite different hopping integrals as a result
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Figure 1. The squashed tetrahedron formed by four neighboring As
ion around each Fe ion in the FeAs plane. From the lattice constant
reported in the literature, a = 4.020 Å, b = 2.35 Å, the angle φ
between the Fe–As bond with the normal of the Fe–As plane is
estimated to be 58.8◦, while in a perfect tetrahedron the angle would
be 54.7◦. Here we use a coordinate system in which the x and y axes
point along the As–As bond directions.

of their different hybridization with the As 4p orbital. Here
we assume the crystal field splitting and the orbital selective
hopping effect to be sufficiently strong to retain only the Fe
3dxz and 3dyz for the discussion of the low energy physics.

In the FeAs plane, each Fe ion sits at the center of
inversion of a squashed (along the normal of the FeAs plane)
tetrahedron formed by four neighboring As ions (see figure 1).
Using the lattice constants reported in the literature [7], one
estimates that the Fe–As bond makes an angle of about
58.8◦ with the normal of the FeAs plane, while in a perfect
tetrahedron the corresponding angle should be 54.7◦. In an
ideal tetrahedron environment, the five-fold degenerate Fe 3d
orbital will split into the Eg doublet (3d3z2−r2 and 3dxy) and
the t2g triplet (3dxz , 3dyz , and 3dx2−y2 ). If we assume that

the crystal field is contributed mainly by the four neighboring
As ions, one would expect the two Eg orbitals to have lower
energy than the three t2g orbitals, as the electron cloud of the
Eg orbital points towards the vacancy of the As ion while the
electron cloud of the t2g orbital points towards the As ion
(see figure 2). When the tetrahedron is squashed along the
z direction, the degeneracy between the 3d3z2−r2 orbital and
the 3dxy orbital will be lifted and the 3d3z2−r2 orbital will have
a lower energy than that of the 3dxy orbital, as the electron
cloud of the 3d3z2−r2 orbital has a better chance of avoiding the
As ion (see figure 2). Similarly, the degeneracy between the
3dxz(3dyz) orbital and the 3dx2−y2 orbital will be lifted and the
3dx2−y2 orbital will have a higher energy than that of the 3dxz

and 3dyz orbitals. In the tetragonal structure of the FeAs plane,
the degeneracy between the 3dxz and 3dyz orbitals is protected
by symmetry.

The divalent Fe ions in the FeAs plane have six electrons
in their 3d shell. According to the above splitting scheme,
one would expect a very peculiar situation to occur in the
parent compounds in which the Fermi energy lies within two
degenerate bands which are both half-filled. We think this is
the reason why the parent compounds, with six electrons in five
3d orbitals, are neither usual band insulators nor a usual band
metals. It may also hold the key to explain why the lightly
doped LnOFeAs system shows such remarkable properties as
having a Tc as high as 50 K [5].

In the following, we assume the crystal splitting to be large
enough to neglect the filled 3d3z2−r2 and 3dxy band and the
empty 3dx2−y2 band in the discussion of low energy physics.
With this simplification, we are left with a model with two
degenerate bands. In this model, each Fe site can accommodate
at most four electrons in the two degenerate bands. In the
parent compound, each Fe site has two electrons on average
in the two degenerate bands and the system is thus half-filled.

Figure 2. The five d orbitals in the crystal field of the tetrahedron formed by the four neighboring As ions around each Fe ion. The 3dx2−y2

and the 3dxy orbitals are shown here in a projection onto the xy plane. In the projection graph, red/light gray (green/dark gray) filled circles
denote As ion above (below) the xy plane. Here we only show the 3dxz orbital, the 3dyz orbital can be obtained from the 3dxz orbital through a
rotation of π

2 along the z-axis.

2



J. Phys.: Condens. Matter 20 (2008) 425203 T Li

The interactions between the electrons on the same Fe site can
be classified into three types, namely the intra-orbital Hubbard
repulsion U , the spin independent part of the inter-orbital
Hubbard repulsion U1, and the spin dependent part of the inter-
orbital Hubbard repulsion J (the usual Hund’s rule coupling).
From the definition of these terms, one easily sees that the
inequality U > U1 > J

4 > 0 should be satisfied. These
interaction terms are represented by the model Hamiltonian

HU = U
∑

i

(ni,xz,↑ni,xz,↓ + ni,yz,↑ni,yz,↓)

+ U1

∑

i

(ni,xz,↑ + ni,xz,↓)(ni,yz,↑ + ni,yz,↓)

− J
∑

i

�Si,xz · �Si,yz (1)

in which ni,xz,↑ = c†
i,xz,↑ci,xz,↑ denotes the number of up spin

electrons in the 3dxz orbital. �Si,xz = 1
2 c†

i,xz,α �σα,βci,xz,β denotes
the spin density on the 3dxz orbital. The meaning of other terms
in the equation is similar.

We now consider the kinetic energy of the Fe 3d electrons.
The Fe 3d electrons can hop between Fe sites either directly
or through the indirect hopping process bridged by the As 4p
orbital (see figure 3). Since the As ions sit above (or below)
the center of the Fe plaquette, the As bridged hopping is much
more effective for the 3dxz and 3dyz orbitals than for other
Fe 3d orbitals, as their electron clouds have the best chance
to reach the As ion. Such an orbital selective hopping effect
provides a natural explanation for the much larger itinerancy of
the 3dxz and 3dyz bands as compared to other 3d bands found
in DFT calculations [7]. In the following, we will assume
that the As bridged hopping is the main contribution to the
kinetic energy of the 3dxz and 3dyz bands and neglect the direct
hopping for these two bands for simplicity (the itinerancy of
other Fe 3d bands still comes from direct hopping).

The As ion has three 4p orbitals in its outmost shell. Since
the 4pz orbital is far away from the Fermi energy, we consider
only the hopping path mediated by the 4px and 4py orbitals
of the As ion. As a result of the sign change between the
two lobes of the 3dxz orbital, an electron in the 3dxz orbital
can hop only via the As 4px orbital. Similarly, an electron in
the 3dyz orbital can hop only via the As 4py orbital. Thus,
the indirect hopping mediated by the As 4px and 4py orbitals
conserves the orbital index, namely, an electron initially on the
Fe 3dxz(3dyz) orbital can only hop onto the 3dxz(3dyz) orbital
of the destination Fe ion (the inclusion of the hopping path
mediated by the 4pz orbital will break such a symmetry) (see
figure 3).

Another peculiarity about the As ion aided effective
hopping is that the hopping integral between next-nearest-
neighboring Fe ions is anisotropic (the hopping between
nearest neighboring Fe ions remains isotropic) and thus breaks
the tetragonal symmetry down to orthogonal. This anisotropy
originates from the anisotropic nature of the 3dxz and 3dyz

orbital. To be more specific, we introduce two kinds of
hopping integral, tA and tB , to denote the σ -like and π -
like hybridization between the 3dxz(3dyz) orbital and the
corresponding 4px(4py) orbital shown in figure 3. Then, the

Figure 3. A schematic representation of the As 4p orbital aided
hopping between neighboring Fe ions on the square lattice. Note that
the As ions lie above or below the Fe plane. Simple symmetry
considerations show that the electron on the Fe 3dxz(3dyz) orbital can
hop only through the As 4px (4py) orbital. This explains the
conservation of the orbital index and the anisotropy of the hopping
Hamiltonian. The electron wavefunction on the yellow/light gray
(blue/dark gray) lobes have positive (negative) values. tA denotes the
σ -like hybridization between the 3dxz(3dyz) and the 4px (4py) orbital,
tB denotes the π-like hybridization between the 3dxz(3dyz) and the
4px (4py) orbital.

As bridged hopping terms between neighboring Fe sites are
given approximately by

t = 2
tAtB

�
, t1 = t2

A

�
, t2 = t2

B

�
, (2)

in which t denotes the hopping integral between nearest
neighboring (NN) Fe sites, t1 and t2 denote the hopping
integrals between next nearest neighboring (NNN) Fe sites in
the two diagonal directions, � denotes the energy splitting
between the Fe 3dxz(3dyz) orbital and the As 4px(4py) orbital.
The factor of two for t comes from the fact that there are two
hopping paths between the nearest neighboring Fe ions.

Taking all these considerations into account, we arrive at
the following model for the effective hopping between the Fe
ions.

Ht = −t
∑

i,�δ,σ

[
(c†

i,xz,σ ci+�δ,xz,σ + c†
i,yz,σ ci+�δ,yz,σ ) + H.C.

]

− t1
∑

i,σ

[
(c†

i,xz,σ ci+�δ′
,xz,σ + c†

i,yz,σ ci+�δ′′
,yz,σ ) + H.C.

]

− t2
∑

i,σ

[
(c†

i,xz,σ ci+�δ′′
,xz,σ + c†

i,yz,σ ci+�δ′
,yz,σ ) + H.C.

]
,

(3)

in which �δ = �ex or �ex denote the nearest neighboring vectors
on the square lattice formed by Fe ions. �δ′ = �ex + �ey and
�δ′′ = �ex − �ey denotes the next nearest neighboring vectors.
From figure 3, it is easy to see that tA and tB have different
signs. As a result, t < 0 and t1, t2 > 0. However, on the
square lattice, the sign of nearest neighboring hopping can be
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made positive with a suitable choice of gauge. In the below,
we will take t > 0.

The dispersion relation of the 3dxz and the 3dxz band are
given by

εxz,k = −2t (cos(kx) + cos(kx)) − 2t1 cos(kx + ky)

− 2t2 cos(kx − ky)

εyz,k = −2t (cos(kx) + cos(kx)) − 2t2 cos(kx + ky)

− 2t1 cos(kx − ky).

(4)

Thus, although the dispersion relation of the 3dxz and the 3dxz

band individually break the tetragonal symmetry, the system as
a whole still possesses tetragonal symmetry.

The total Hamiltonian of the system is the sum of the on-
site term HU and the hopping term Ht . Before looking at
the phase diagram of the model, we first estimate the model
parameters. According to DFT calculations, the Hubbard
repulsions U and U1 are about 4 eV in magnitude and the
Hund’s rule coupling J is about 1 eV in magnitude. For the
hopping terms, as both the Fe 3dxz–As 4px separation and the
hopping integral between the two are of the order of 1 eV,
we estimate the effective hopping integral between the Fe ions
mediated by the As ions to be also of the order of 1 eV. Thus the
system has a moderate level of electron correlation. Another
important interaction parameter is the ratio between the NNN
and NN hopping integral. In our model, the ratio is given by

t1
t

= 1

2

tA

tB
,

t2
t

= 1

2

tB

tA
. (5)

Thus, the NNN to NN hopping ratio is at least 0.5, much larger
than one would expect if there were only direct hopping.

Now we discuss the possible phase diagram of the model.
In the half-filled parent compounds, each site is occupied on
average by two electrons. Since the intra-orbital Hubbard
repulsion U is larger than the inter-orbital Hubbard repulsion
U1, the two electrons tend to occupy different orbitals and the
remaining Hund’s rule coupling tends to align the spin of the
electrons on both orbitals. Thus each individual Fe ion carries
approximately a unit spin angular momentum and shows two
Bohr magnetons of magnetic moment.

The inclusion of the hopping terms between the Fe
ions will induce antiferromagnetic spin exchange between
neighboring Fe ions within each band. Since the frustration
ratio is already quite large, it is a nontrivial problem as to
what kind of magnetic order is favored for the realistic model
parameter. To elucidate this problem, we conduct a mean field
calculation on the magnetic order for the half-filled system.
For simplicity, we restrict our calculation to colinear magnetic
order with the ordering wavevector at (π, π) and (π, 0). The
mean field Hamiltonian, apart from the chemical potential term
and the constant energy term, is given by

HMF = Ht − (2U + J )
∑

i

Mi (Sz
i,xz + Sz

i,yz), (6)

in which Mi = 1
2 〈

∑
σni,xz,σ 〉 = 1

2 〈∑ σni,yz,σ 〉 = M exp(i �Q ·
�Ri) is the order parameter for the magnetic order, �Q = (π, π)

or (π, 0) is the ordering wavevector. From the mean field

Figure 4. The critical value for the formation of magnetic order at
(π,π) and (π, 0) as a function of the frustration ratio tA

tB
.

Hamiltonian, we find that the Hund’s coupling acts to enhance
the effect of the intra-orbital Hubbard U term and in the
following we take it into account by defining Ũ = U + J

2 .
The mean field self-consistent equation for the order

parameter is given by

1 = 2Ũ

N

∑

k

[
(ξk − E+

k )n+
k

�2
AF + (ξk − E+

k )2
+ (ξk − E−

k )n−
k

�2
AF + (ξk − E−

k )2

]
,

(7)
in which the sum is over the reduced Brillouin zone of the
corresponding magnetic order, n±

k = 1 − θ(E±
k ),�AF = Ũ M .

E±
k is given by

E±
k =

ξk + ξk+ �Q ±
√

(ξk − ξk+ �Q )2 + 4�2
AF

2
, (8)

in which ξk = εxz,k − μ and the chemical potential μ is
determined by the half-filling condition.

We have solved the self-consistent equation numerically.
Figure 4 shows the critical value Ũc for the formation of
magnetic order at wavevector (π, π) and (π, 0) as a function
of tA

tB
. We find that the critical value for both orders increases

with the frustration ratio tA
tB

and the order with a lower critical
value is always more stable. Thus, for tA

tB
< 2, or t1

t <

1, the (π, π) order is more stable, while for tA
tB

> 2, or
t1
t > 1, the (π, 0) order becomes more stable. The (π, 0)

order observed in experiment then indicates that the system
is strongly frustrated. The As ion bridged indirect hopping
proposed in our model seems to be the only way to account
for such strong geometrical frustration.

Figure 5 shows the ordered moment calculated at a fixed
frustration ratio tA

tB
= 2.5 for �Q = (π, 0). We find that the

ordered moment increases abruptly from zero to a value of
order 2μB above the critical interaction value. Such a first
order transition behavior is caused by geometrical frustration.
Experimental detection of such a transition can be interesting.
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Figure 5. The ordered magnetic moment as a function of Ũ
t with the

frustration ratio fixed at tA
tB

= 2.5 and �Q = (π, 0).

Finally we discuss the superconducting phase at finite dop-
ing. As in the cuprate superconductors, the antiferromagnetic
superexchange responsible for the magnetic ordering at half-
filling will also induce electron pairing at finite doping in
the singlet channel. A quantitative analysis of such pairing
instability in our model is beyond the scope of the present
work. Here we present a qualitative analysis of the possible
pairing symmetry in the singlet channel.

In our model, the antiferromagnetic superexchange takes
place within each band and thus the singlet pairing induced
by it is an intra-band electron pairing. As we have mentioned
above, the 3dxz and the 3dyz band individually each have an
orthogonal symmetry (see figure 6). Thus we should classify
the intra-band electron pairing according to the orthogonal
rather than the tetragonal point group. For the orthogonal
point group C2v, there are two irreducible representations in the
singlet channel, namely the d-wave pairing and the extended s-
wave pairing representation. The sign structure for both pairing
symmetries in real space is illustrated in figure 6. In the d-wave
pairing case, the pairing amplitudes are odd with respect to the
reflection in the two diagonal directions and thus the pairing
amplitudes in these two directions are forced to be zero. In
the extended s-wave pairing case, the pairing amplitude is even
with respect to both reflections and thus can be nonzero in all
directions.

As we have mentioned above, the (π, 0) magnetic order
at half-filling is stable only when t1 > t . In such a case, the
superexchange in the diagonal direction with hopping integral
t1 should be the strongest and we would expect the strongest
singlet pairing in this direction. This is obviously inconsistent
with the d-wave paring symmetry which enforces the pairing
amplitude in the diagonal direction to be zero. Thus we
believe the extended s-wave pairing is the most possible pairing
symmetry, provided that the magnetic exchange is the origin of
the pairing.

The above argument can also be formulated in the
momentum space as follows. According to the weak

Figure 6. The sign structure of the d-wave and extended s-wave
pairing amplitudes in real space. Bonds in the different thicknesses
have different strengths of the hopping integral. In the extended
s-wave case, the pairing amplitude on NN bonds can be made
positive with gauge transformation.

coupling analysis, the pairing gap induced by the exchange of
magnetic fluctuation peaked at momentum �Q should satisfy the
following inequality on the Fermi surface [16]

�k�k+ �Q < 0. (9)

For �Q = (π, 0), this inequality is incompatible with the d-
wave pairing which has a gap function of the form cos(kx) −
cos(ky), but can be compatible with the extended s-wave
pairing if the pairing amplitudes along the diagonal direction
are large enough.

Up to now, we have neglected the inter-orbital couplings
in our discussion of the superconductivity. In the presence of
such couplings, the Cooper pairs in the two bands get entangled
with each other. Such entanglement will inevitably increase the
effective mass of the Cooper pair in each band and reduce the
superfluid density. More specifically, the Hund’s rule coupling
will induce entanglement between the Cooper pairs in the spin
channel (in a way much like the projection operator does in
the construction of the matrix-product-type ground state for
the Affleck–Kennedy–Lieb–Tasaki (AKLT) model [15]), while
the inter-orbital Hubbard interaction will induce entanglement
in the charge channel. Since the Hund’s rule coupling tends
to enlarge the spin value at each site and thus enhance the
classical nature of the electron spin, it seems to be at odds
with the spin singlet pairing which is of totally quantum nature.
Thus, in addition to the entanglement effect, the Hund’s rule
coupling seems to also suppress electron pairing in the singlet
channel. A detailed analysis of these interesting problems is
left for future works.

In summary, a microscopic model for the FeAs plane of
the newly discovered iron-based superconductors is proposed.
In our model, the orbital degeneracy between the Fe 3dxz

and 3dyz orbitals plays an essential role. The model predicts
that the Fe 3dxz and 3dyz orbitals have the largest itinerancy
among the five Fe 3d orbitals as a result of their hybridization
with the As 4p orbital. The covalence with the As 4p orbital
also explains naturally the large geometric frustration which
is necessary for the formation of the magnetic order with a
wavevector at (π, 0). Based on symmetry considerations and
the local magnetic correlation pattern, we propose an extended
s-wave pairing for the superconducting state.
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